4 research outputs found

    Conceivable security risks and authentication techniques for smart devices

    Get PDF
    With the rapidly escalating use of smart devices and fraudulent transaction of users’ data from their devices, efficient and reliable techniques for authentication of the smart devices have become an obligatory issue. This paper reviews the security risks for mobile devices and studies several authentication techniques available for smart devices. The results from field studies enable a comparative evaluation of user-preferred authentication mechanisms and their opinions about reliability, biometric authentication and visual authentication techniques

    Trust and Mobility-Based Protocol for Secure Routing in Internet of Things

    No full text
    In the Internet of Things (IoT), the de facto Routing Protocol for Low Power and Lossy Networks (RPL) is susceptible to several disruptive attacks based on its functionalities and features. Among various RPL security solutions, a trust-based security is easy to adapt for resource-constrained IoT environments. In the existing trust-based security for RPL routing attacks, nodes’ mobility is not considered or limited to only the sender nodes. Similarly, these trust-based protocols are not evaluated for mobile IoT environments, particularly regarding RPL attacks. Hence, a trust and mobility-based secure routing protocol is proposed, termed as SMTrust, by critically analysing the trust metrics involving the mobility-based metrics in IoT. SMTrust intends to provide security against RPL Rank and Blackhole attacks. The proposed protocol is evaluated in three different scenarios, including static and mobile nodes in an IoT network. SMTrust is compared with the default RPL objective function, Minimum Rank with Hysteresis Objective Function (MRHOF), SecTrust, DCTM, and MRTS. The evaluation results indicate that the proposed protocol outperforms with respect to packet loss rate, throughput, and topology stability. Moreover, SMTrust is validated using routing protocol requirements analysis to ensure that it fulfils the consistency, optimality, and loop-freeness

    A Trust-Based Model for Secure Routing against RPL Attacks in Internet of Things

    No full text
    In IoT networks, the de facto Routing Protocol for Low Power and Lossy Networks (RPL) is vulnerable to various attacks. Routing attacks in RPL-based IoT are becoming critical with the increase in the number of IoT applications and devices globally. To address routing attacks in RPL-based IoT, several security solutions have been proposed in literature, such as machine learning techniques, intrusion detection systems, and trust-based approaches. Studies show that trust-based security for IoT is feasible due to its simple integration and resource-constrained nature of smart devices. Existing trust-based solutions have insufficient consideration of nodes’ mobility and are not evaluated for dynamic scenarios to satisfy the requirements of smart applications. This research work addresses the Rank and Blackhole attacks in RPL considering the static as well as mobile nodes in IoT. The proposed Security, Mobility, and Trust-based model (SMTrust) relies on carefully chosen trust factors and metrics, including mobility-based metrics. The evaluation of the proposed model through simulation experiments shows that SMTrust performs better than the existing trust-based methods for securing RPL. The improvisation in terms of topology stability is 46%, reduction in packet loss rate is 45%, and 35% increase in throughput, with only 2.3% increase in average power consumption
    corecore